Obstructions to Weak Decomposability for Simplicial Polytopes
نویسندگان
چکیده
Provan and Billera introduced notions of (weak) decomposability of simplicial complexes as a means of attempting to prove polynomial upper bounds on the diameter of the facet-ridge graph of a simplicial polytope. Recently, De Loera and Klee provided the first examples of simplicial polytopes that are not weakly vertex-decomposable. These polytopes are polar to certain simple transportation polytopes. In this paper, we refine their analysis to prove that these d-dimensional polytopes are not even weakly O( √ d)-decomposable. As a consequence, (weak) decomposability cannot be used to prove a polynomial version of the Hirsch Conjecture.
منابع مشابه
Transportation Problems and Simplicial Polytopes That Are Not Weakly Vertex-Decomposable
Provan and Billera defined the notion of weak k-decomposability for pure simplicial complexes in the hopes of bounding the diameter of convex polytopes. They showed the diameter of a weakly k-decomposable simplicial complex ã is bounded above by a polynomial function of the number of k-faces in ã and its dimension. For weakly 0-decomposable complexes, this bound is linear in the number of verti...
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملDecomposability of Polytopes
We reformulate a known characterization of decomposability of polytopes in a way which may be more computationally convenient, and offer a more transparent proof. We apply it to give new sufficient conditions for indecomposability of polytopes, and then illustrate them with some examples.
متن کاملVertex Decomposable Graphs and Obstructions to Shellability
Inspired by several recent papers on the edge ideal of a graph G, we study the equivalent notion of the independence complex of G. Using the tool of vertex decomposability from geometric combinatorics, we show that 5-chordal graphs with no chordless 4-cycles are shellable and sequentially Cohen-Macaulay. We use this result to characterize the obstructions to shellability in flag complexes, exte...
متن کاملReduced Arithmetically Gorenstein Schemes and Simplicial Polytopes with Maximal Betti Numbers
An SI-sequence is a finite sequence of positive integers which is symmetric, unimodal and satisfies a certain growth condition. These are known to correspond precisely to the possible Hilbert functions of Artinian Gorenstein algebras with the Weak Lefschetz Property, a property shared by most Artinian Gorenstein algebras. Starting with an arbitrary SI-sequence, we construct a reduced, arithmeti...
متن کامل